Medically important arboviruses such as dengue, Zika, and chikungunya viruses are primarily transmitted by the globally distributed mosquito Aedes aegypti. Increasing evidence suggests that transmission can be influenced by mosquito viromes. Herein RNA-Seq was used to characterize RNA metaviromes of wild-caught Ae. aegypti from Bangkok (Thailand) and from Cairns (Australia). The two mosquito populations showed a high degree of similarity in their viromes. BLAST searches of assembled contigs suggest up to 27 insect-specific viruses may infect Ae. aegypti, with up to 23 of these currently uncharacterized and up to 16 infecting mosquitoes from both Cairns and Bangkok. Three characterized viruses dominated, Phasi Charoen-like virus, Humaita-Tubiacanga virus and Cell fusing agent virus, and comparisons with other available RNA-Seq datasets suggested infection levels with these viruses may vary in laboratory-reared mosquitoes. As expected, mosquitoes from Bangkok showed higher mitochondrial diversity. Blood meal reads primarily mapped to human genes, with a small number also showing homology with rat/mouse and dog genes. These results highlight the wide spectrum of data that can be obtained from such RNA-Seq analyses, and suggests differing viromes may need to be considered in arbovirus vector competence studies.